
Writing Autograder Tests

Aug 15, 2020

Contents:

1 Doctests 1
1.1 Doctest Format . 1
1.2 Running Doctests . 2

2 Comparisons 3
2.1 Return Value Types . 3

2.1.1 None . 3
2.1.2 bool . 4
2.1.3 int, float, and other numeric types . 4
2.1.4 str . 5
2.1.5 other data types . 5

3 Seeding 7
3.1 Solution 1: Functions . 7
3.2 Solution 2: Seeding the Students’ Code . 8

4 OK Test Format 9

5 Master Notebook Tools 11

i

ii

CHAPTER 1

Doctests

Most Python autograders run doctests against a global environment from the execution of a student’s submission.
These doctests are text formatted as if from a Python interpreter that tell the executor what code to run and what output
to expect. An important nuance of doctests is that these test are based on string comparison, so the outputs 1 and 1.0
are not equal.

1.1 Doctest Format

Python doctests are formatted as input and output from a Python interpeter, e.g.

>>> import numpy as np
>>> np.random.seed(42)
>>> np.random.choice([1, 2, 3])
3

Note that Python structures that require multiple lines have ... prompts, not >>>.

>>> def foo(x):
... return x
>>> if foo(1) % 2 == 0:
... print("even")
... else:
... print("odd")

Lines that have an ellipsis prompt include elif, else, except and finally clauses, function bodies, continu-
ations of escaped lines (lines after those ending with \), and other indented lines (those that begin with whitespace).
Note that in a normal interpreter there would be an additional empty line after an ellipsis block with an ellipsis prompt,
but this can be omitted when writing doctests.

Sometimes, writing autograder tests may require the use of special characters whose meanings are changed when
Python compiles the string, e.g. \. If your autograder test involves these characters, when Python compiles the
string, the doctest’s meaning will be changed. For this reason, when writing doctests, it is always best practice to put
autograder tests in raw strings, denoted by the letter r before the opening quote:

1

Writing Autograder Tests

this is an example test in the OK format
test = {

"suites": [
{

"cases": [
{

"code": r"""
>>> if 4 % 2 == 0:
... print("even")
even
""" # a raw string

}
]

}
]

}

Note also that the doctest library ignores leading whitespace before prompts and outputs, e.g. as with textwrap.
dedent, so even though the spaces before each line in the string above are captured, they are ignored when the doctest
is executed.

1.2 Running Doctests

Autograders abstract away executing doctests beyond the step of actually writing them. Once you understand the
doctest format, you can write your own autograder tests and allow the autograder to take care of executing them and
parsing the output. Most Python autogaders make use of Python’s doctest library to perform these tests, and return
results based on whether or not these pass.

2 Chapter 1. Doctests

CHAPTER 2

Comparisons

A fundamental aspect of doctests is that the pass/fail behavior is determined by string comparisons. When a doctest
is run, the code provided in the Python interpreter format is executed line-by-line and then the output of that line is
expected to equal the output shown in the doctest.

2.1 Return Value Types

2.1.1 None

Statements that return the Python value None have no output. If you put None into a Python interpeter, there is no
output shown:

>>> None
>>> # the next interpreter prompt

Some statements that return the value None include assignment statements, import statements, calls to functions like
print and exec, and any functions with no return statement or a return statement that returns None itself.

>>> def foo(x):
... return x
>>> def bar(y):
... y = "some string"
>>> def baz(z):
... return None
>>> foo(1)
1
>>> bar(2)
>>> baz(3)
>>> foo(None)
>>> print("some other string")
some other string

3

Writing Autograder Tests

2.1.2 bool

Boolean values in Python are by far the easiest to check with doctests because they have a static string representation
and only two possible values. The string representation of bool``s is the same as their variable
names: ``True and False.

>>> True
True
>>> False
False
>>> def is_even(x):
... return x % 2 == 0
>>> is_even(1)
False
>>> is_even(4)
True

2.1.3 int, float, and other numeric types

Numeric types are the most difficult to test for two reasons: there are several different types of numeric values (e.g.
int, float, and all of the NumPy types) and rounding errors can occur based on how and when students choose to
round off calculations. For these reasons, unless you’re working with integers, it is usually easiest to use functions that
return boolean values to compare numeric values.

When working with integers, almost all data types that represent them have the same string representation. For this
reason, it is a relatively easy thing to write doctests that compare integer values with each other:

>>> from math import factorial
>>> factorial(4)
24
>>> def square(x):
... return x**2
>>> square(25)
625

If, however, it is possible for the numbers to be floating point values, other methods of comparison are better-suited to
writing doctests. One of the best examples is NumPy’s isclose function, which compares two values to each other
within an adjustable tolerance (which defaults to 1e-8). Because NumPy supports both single and double precision
floating point values, rounding errors can occur even when performing the same operation on values represented in
different precision data types. This is why using functions that perform comparisons and return boolean values is
much more robust to all of the ways that students can format their answers.

>>> def divide(a, b):
... return a / b
>>> divide(divide(5, 3), 3) # solution (a)
0.5555555555555556
>>> divide(5, 3) # solution (b)
1.6666666666666667
>>> divide(1.66666667, 3) # solution (b) cont.
0.5555555566666667

Note that while solutions (a) and (b) above are both substantially correct, the rounding in solution (b) cause the otputs
to be different, so if a test using solution (a) check a student’s response solution (b), the student would fail the test.
Using a function like np.isclose, this is avoided:

4 Chapter 2. Comparisons

Writing Autograder Tests

>>> np.iclose(
... divide(divide(5, 3), 3), # solution (a)
... divide(1.66666667, 3) # solution (b)
...)
True

Because booleans have easy-to-compare string representations, this test is much more robust to all of the possible
sooutions to this question, and demonstrates the best practice for comparing numeric values. (Note that NumPy also
provides np.allclose for element-wise comparison of values in iterables.)

2.1.4 str

String comparisons are relatively easy and the most straightfoward because doctests are based on string comparison.
The main concern is to be careful of leading and trailing whitespace and to note that unless the ' character appears
in the string, Python’s default string delimeters are apostrophes. If both appear, then apostrophes are used and the
apostrophe in the string is escaped:

>>> 'some string'
'some string'
>>> "some'string"
"some'string"
>>> "some string"
'some string'
>>> """some string"""
'some string'
>>> '''some string\n'''
'some string\n'
>>> '''some string '"\n'''
'some string \'"\n'

2.1.5 other data types

Other data types don’t have very many complexities surrounding them. For custom objects, note what their __repr__
function returns and use that. When creating and testing custom classes, always use a custom __repr__ function,
otherwise the representation will contain the pointer to the object in memory, which changes between sessions.

>>> class Point:
... def __init__(self, x, y):
... self.x = x
... self.y = y
>>> Point(1, 2) # this has no __repr__, so it will have the object id
<__main__.Point object at 0x102cb3ac8>
>>> class OtherPoint:
... def __init__(self, x, y):
... self.x = x
... self.y = y
... def __repr__(self):
... return f"OtherPoint(x={self.x}, y={self.y})"
>>> OtherPoint(1, 2) # this has a __repr__, so it will be printed without the id
OtherPoint(x=1, y=2)

Always test your tests in a Python interpeter if you’re unsure about the string representation of an object.
Don’t use a Jupyter Notebook or IPython, because they don’t necessary have the same output and they have different
prompts.

2.1. Return Value Types 5

Writing Autograder Tests

6 Chapter 2. Comparisons

CHAPTER 3

Seeding

An important aspect of writing code in the data science environment is the ability to simulate random processes. This
presents a unique challenge to autograding assignments because the random state of the students’ environments will be
completely different from the grading environment. Some autograding solutions account for this issue by incorporating
calls to seed random libraries during execution; Otter-Grader does this very easily using grading configurations, and
this is by far the most preferable solution if you’re using Otter.

When working with other autograding solutions, seeds must be incorporated into the test files themselves and assign-
ments must be written in such a way as to make the seeding before execution possible.

3.1 Solution 1: Functions

The first and easiest solution to this problem is to have students wrap their code involving randomness into a function.
In this way, the tests can make a seeding call before calling the function directly, ensuring that the seed set before the
code is executed. Consider the following example question and the following test:

import numpy as np

Question 1: Define roll_die which rolls a 6-sided die using NumPy.
def roll_die():

return np.random.choice(np.arange(1, 7))

>>> np.random.seed(42)
>>> roll_die()
4

This approach, while easy-to-implement and effective, is generally at odds with the general autograding paradigm of
testing global variables directly rather than encapsulting logic in needless functions. For this reason, there is another
solution that is perhaps more elegant.

7

https://otter-grader.rtfd.io/

Writing Autograder Tests

3.2 Solution 2: Seeding the Students’ Code

In this solution, the random libraries are seeded directly before the student writes their code in a manner visible to the
students.

import numpy as np

np.random.seed(42)

Question 1: Assign roll_value to the roll of a six-sided die.
roll_value = np.random.choice(np.arange(1, 7))

>>> np.random.seed(42)
>>> roll_die()
4

This method is significantly less elegant and is susceptible to students changing the seed, which could throw off the
results of the test and fail students incorrectly. It is also important to note that if you’re working in a notebook format,
you need to include seeds im every randomness cell because repeated runs of cells will change the seed value for
subsequent questions, which could result in students failing tests.

8 Chapter 3. Seeding

CHAPTER 4

OK Test Format

Most autograders developed at UC Berkeley, including Otter-Grader, rely on the OK test format, originally developed
for OkPy. This test format relies on doctests to check that students’ code works correctly.

The OK format is very simple: a test is defined by a single Python file that contains a global variable called test
which is assigned to a dictionary containing test configurations. The structure of this dictionary is:

• test["name"] is the name of the test case, and should be a valid Python variable name

• test["points"] is the point value of the test case; points are assigned all-or-nothing and all test cases (more
below) must pass to be awarded the points

• test["suites"] is a list of dictionaries that correspond to test suites, groups of test cases; a suite consists
of:

– suite["cases"] is a list of dictionaries that correspond to test cases (individual doctests); a case
consists of:

* case["code"] is a Python interpreter-formatted string of code to be executed

* case["hidden"] is a boolean that indicates whether the test case is hidden from students

* case["locked"] is a boolean that indicates whether the test case is locked; this configuration is
generally only relevant to OkPy

– suite["score"] is a boolean that indicates whether the suite is part of the score

– suite["setup"] is a code string that is run before the individual test cases are run

– suite["teardown"] is a code string that is run after the individual test cases are run

– suite["type"] is a string indicating the type of test; this is almost always going to be "doctest"
unless you’re using OkPy

Note that graders like Otter-Grader only allow test files with a single test suite.

test = {
"name": "q1",
"points": 1,

(continues on next page)

9

https://otter-grader.rtfd.io/
https://okpy.github.io/documentation
https://okpy.github.io/documentation
https://okpy.github.io/documentation
https://otter-grader.rtfd.io/

Writing Autograder Tests

(continued from previous page)

"suites": [
{

"cases": [
{

"code": r"""
>>> foo()
'bar'
""",
"hidden": False,
"locked": False

}
],
"scored": True,
"setup": "",
"teardown": "",
"type": "doctest"

}
]

10 Chapter 4. OK Test Format

CHAPTER 5

Master Notebook Tools

Most UC Berkeley autograders include tools to abstract away the generation of test files by allowing users to define
the tests along with questions and solutions in a simple notebook format. Tools like this include jAssign for OkPy and
Otter Assign for Otter-Grader.

Most of these tools rely on the output of comment-delimited code cells to generate the doctest- formatted test cases
used in test files and parse these notebooks out into two versions: a directory containing the notebook with solutions
and hidden tests, and a directory with the notebook stripped of solutions and only public tests.

In general, it is highly recommended that you use one of these tools as they ensure the gradeability of assignments
and make the process of creating and distributing assignments much easier. Otter Assign also integrates nicely with
its other tools and makes the process of using Otter with 3rd part services much easier.

This guide considers best-practices for writing Python autograder tests. While this guide is focused mainly on OK-
formatted tests (those used in Berkeley’s OkPy and Otter autograders), some of the ideas discussed are applicable to all
Pythonic autograders and the tests written for them. The topics discussed herein include test formatting, ok-formatted
test files, structuring tests, and working with randomness.

11

https://github.com/okpy/jAssign
https://otter-grader.rtfd.io
https://otter-grader.rtfd.io
https://okpy.org
https://otter-grader.readthedocs.io

	Doctests
	Doctest Format
	Running Doctests

	Comparisons
	Return Value Types
	None
	bool
	int, float, and other numeric types
	str
	other data types

	Seeding
	Solution 1: Functions
	Solution 2: Seeding the Students’ Code

	OK Test Format
	Master Notebook Tools

